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Three-dimensional negative eddy viscosity effect on the onset of instability in some planar flows
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Three-dimensional linear stability of the rectangular cell flow W =coskx cosy (0 <k <1) to long-wave
disturbances is investigated numerically. Owing to the spatial periodicity of the flow the disturbances
take the form exp[ot +i(akx +By +yz)]F(kx,y) (0<a<0.5,0<B<0.5, and 0<y < o0 ), where F has
the same periodicity as the main flow. It is found that the critical Reynolds number is determined by the
three-dimensional large-scale modes in the range 0.55<k <0.71. The direction of the critical mode
(a=0,B~7) is independent of the anisotropic parameter k.

PACS number(s): 47.20.—k, 47.54.+r, 92.60.—e

Stability of flows periodic in space and, possibly in
time, is currently a topic of active interest in the Navier-
Stokes flows. Cellular flows that are constructed by a
combination of sine and cosine functions may be regard-
ed as a simple model of the secondary flows with the
two-dimensional spatial structures [1]. One advantage to
treat this type of flow as a substitute for more realistic
flows is to reduce the burden of the numerical and analyt-
ical task. We hope that this model shares some common
characteristics with more general two-dimensional flows
which are frequently observed in laboratory experiments
and natural phenomena. In addition to this purpose,
several researchers have treated them in order to discuss
the possibility of the inverse energy cascade and spon-
taneous organization of large-scale structures in hydro-
dynamic turbulence [2].

Instability of a simple parallel flow, i.e., the Kolmo-
gorov flow (W =cosy), was first investigated and it was
shown that the flow becomes unstable to the large-scale
modes, whose structure is almost uniform. Its growth
rate is proportional to the square of the wave numbers;
this type of the instability is often called the negative
eddy viscosity effect [3]. As an extension of the parallel
periodic flows, stability of some two-dimensional periodic
flows such as a rhombic cell flow and a triangular cell
flow are also treated [1,2]. Some anisotropic systems ex-
hibit a negative eddy viscosity effect which is similar to
the case of the Kolmogorov flow, that is, a two-
dimensional large-scale secondary flow appears at a su-
percritical Reynolds number. Previous studies on the sta-
bility of the two-dimensional flows are restricted to treat-
ing the two-dimensional disturbances. A search for the
appearance of three-dimensional large-scale structures in
purely two-dimensional flows [ U(x,y), ¥V (x,y),0] has not
been carried out yet, except for our recent works [4] (to
the authors’ knowledge).

In the linear stability theory of the two-dimensional
parallel flow, Squire’s theorem guarantees that the pri-
mary instability occurs in the development of the two-
dimensional disturbances [5]. However, this theorem is
not extended in general to the problem of the nonparallel
flow; a three-dimensional disturbance may play a decisive
role in determining the critical Reynolds number. Based
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on this motivation, the three-dimensional stability of
some spatially periodic flows has been investigated nu-
merically. In rhombic cell flows [4], the three-
dimensional effects on the critical modes always reduce
the instability, which leads us to conclude that the criti-
cal Reynolds number is determined by the two-
dimensional disturbances in this case. However, we have
no proof that the critical Reynolds number is determined
by a two-dimensional disturbance even if we limit our
concern to long-wave disturbances.

In this paper, by solving the eigenvalue problem, we
present what we believe to be the first example that a
three-dimensional disturbance determines the critical
Reynolds number of the flows governed by the Navier-
Stokes equation. We consider a simple rectangular cell
flow represented by the stream function:

W(x,y)=coskx cosy , (1)

where the parameter k (0 <k <1) represents the anisot-
ropy of the flow. It is also expressed by
[cos(kx +y)+cos(kx —y)]/2. An example of the case
k =0.6 is shown in Fig. 1. Using it as a counterexample
we can prove explicitly that Squire’s theorem cannot be
extended to general two-dimensional flows. Another pur-
pose of this work is to investigate whether a three-
dimensional large-scale flow can appear spontaneously
under a small-scale two-dimensional forcing or in the
two-dimensional flows which are uniform in the vertical
direction. It should be noted that Bayly [6] investigated a
three-dimensional instability of this flow by solving the
time-evolution of the linearized Navier-Stokes equation.
In his work his attention is focused on the short-wave in-
stability in (almost) inviscid flows related to the elliptical
instability [7]. The large-scale instability cannot be treat-
ed by this method.

Below we formulate our problems following our previ-
ous works [4]. We consider an incompressible flow
governed by the Navier-Stokes equation, appropriately
nondimensionalized, with the forcing term:

d,u; +(u;9;)u; +3;,p=R ~'3%u; +f, , )
d;u;=0, (3)
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FIG. 1. An example of the streamlines of the main flow:
Y =coskx cosy with k =0.6. The bold line represents counter-
clockwise rotation while the dashed line represents clockwise
rotation.

where u; is the velocity; p is the pressure; f; is the exter-
nal force arranged to provide a steady two-dimensional
flow uy=(V,¥,,0), where V;=93,¥ and ¥V,=—93,¥ in
terms of the stream function ¥; 3,=09/9¢t; 3, =3/0x;; R
is the Reynolds number; and we use Einstein’s conven-
tion for summation.

Applying twice the curl in succession to Eq. (2) and us-
ing Eq. (3), we have

(8, —R T'A)Av; + A(v, 3, v;)—d;(3;0;, 84 v;)
—8,(akfk)+Af,=0 . (4)

Here we consider the instability of u, to the three-
dimensional disturbances #'=(v,,v,,v3) and p’. It
should be stressed that they depend on all spatial coordi-
nates (x,,X,,x;). By substituting ¥ =#,-+1#" into Eq. (4)
and neglecting the quadratic terms of disturbance, we
have a system of equations as follows:

(8, —R ~'A)Av;, + A(V,3,v; + V0,0, +v,3,V; +v,3,V;)
—209,(3,V,9,v, +0,V,0,0, +0,V,0,v,
+3,V,3,0,)=0, 5)
0303 = —(0v; +3,0,) , (6)

where i =1,2. The disturbance must be subject to the
boundary condition: v;(xo,y,t)=v;(x,tw0,t)< 0. It
should be noticed here that in Eq. (5) the first two equa-
tions governing v, and v, are separated from the third
which determines v, from v, and v,.

The main flow (1) satisfies the equation
AV = —(k?+1)¥; it belongs to the exact solutions of the
Euler equation. The magnitude of both wave numbers of
respective terms in Eq. (1) is equal to V'k2+1. Since this
main flow has the periodic structure
Y(x +27/k,y)=W(x,y +27)=W(x,y), the solution of
Eq. (5) can be found by the Floquet theory system in the
form

v;=expl[ot+ilakx +By +yz)]F;(kx,y) , @)
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where o is a complex growth rate, ¢ and B are the Flo-
quet exponents, being real in accordance with the bound-
ary condition, and y is the wave number perpendicular to
the main flow. The function F;(kx,y) must be subject to
the periodic condition: F;(kx +2m,y)=F;(kx,y +21)
=F;(kx,y). The function F;(kx,y) specified by Eq. (7) is
given by

[Fi(kx,),Fy(kx,p)1= 3 [@pmp by lexpli (mkx +ny)] ,
(8)

where the summation takes all combinations of the in-
tegers m and n. Substitution of Eq. (8) into Eq. (5) gives
an infinite set of algebraic eigenvalue equations of a,,,’s
and b,,,’s, whose forms are omitted for the sake of space.
The eigenvalue equations depend on five free parameters:
a, B, v, k, and R. The variation ranges of a and 3 are re-
duced to [0,1/2] without loss of generality, but that of y
is [0, o0 ].

To find the critical Reynolds number R, we set 0 =0
on the assumption of the principal of exchange of stabili-
ty and solve the eigenvalue problem for the Reynolds
number R instead of solving the eigenvalue problem for
the growth rate o. After obtaining the value of R, we
confirm that the sign of the real part of o actually
changes as the Reynolds number R increases through this
value. The numerical calculation is performed for a
cutoff M X M matrix. The cutoff number M is defined by
2(2N, +1)(2N,+1), where N, and N, are truncation
numbers in the x and the y directions, respectively. We
solve the eigenvalue problem numerically using the
modified QR method with double precision. The numeri-
cal calculations have been carried out using a 242 X242
matrix with N, =N, =5 in most cases. We shall use the
values whose difference between the cases with
N,=N,=4and N, =N, =5 is less than 0.1% of them.

Of our concern is the behavior of the growth rate in
the vicinity of the origin (¢ ==y =0). In order to clar-
ify the dependence of the origin on the direction of the
limits of these parameters to the origin, we use the spher-
ical polar coordinate

(a,B,7 )=¢€(cosd cosb,cos¢ sinb, sing) , 9)

where  e=Va2+B2+7y?, @=arctan(B/a), and
p=arctan(y /V a®+B?). Typically we select e=10"3 or
10™*, It should be noted that we have not used the con-
ventional spherical coordinates. The angle ¢ measures
the three-dimensionality of the disturbances (i.e., $=0
corresponds to the purely two-dimensional disturbance).
Before we describe the present results of the three-
dimensional effects on the stability, we sum up the results
of the critical Reynolds number to the two-dimensional
disturbances [8]. The results of the critical Reynolds
numbers for various values of the anisotropic parameter
k between O and 1 are shown in Fig. 2. Two types of
modes are indicated in Fig. 2. The large-scale mode is
denoted by the dashed curve, whose structure is uniform
in space. The critical modes are given along the direction
O=~arctank. The growth rate is proportional to the
square of the exponents [i.e., o=0,e*+ -,
0,=0,(0,R) and 90,/860]. The periodic mode is
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FIG. 2. The critical Reynolds number against the anisotropic
parameter k. The lower solid line represents the 3D minimum
Reynolds number: R (k,0=m/2)=min,R (k,0=m/2,¢). The
angle ¢ is close to /4 as shown in Table I. The upper solid line
represents  the 3D minimum  Reynolds  number:
R (k,6=0)=min4R (k,6=0,¢4). The angle ¢ is close to 7/4.
Dashed line: 2D critical Reynolds number of the large-scale
mode; dotted line: 2D critical Reynolds number of the periodic
mode.

denoted by the dotted curve, whose structure has the
same basic periodicity [i.e., F(kx,y)71.] The growth

rate [i.e, o=0y+0,e*+ -+, 0,=0,(8,R)<0, 30,/
060=0] is independent of the direction 6 in parameter
space.

In our previous study [4] we investigated the three-
dimensional stability of the square cell flow which corre-
sponds to the case with k =1 here, and obtained the re-
sult that the growth rate of the critical modes with
specified 6 decreases owing to the three-dimensional
effect. For some 0 the three-dimensional effect reduces
the marginal Reynolds number. All modes are large-
scale modes. In the range 0<6<0.625 the Reynolds
number seems to become infinite to two-dimensional dis-
turbances and takes the minimum at ¢( =~ /4), but this is
larger than the value of two-dimensional disturbance
(0,¢)=(m/4,0). Therefore we expect that the three-
dimensional disturbance may determine the critical value
of R if the two-dimensional disturbances in any direction
show the positive eddy viscosity (i.e., R — oo for any 6
with ¢ =0).

Along the line of this idea we examine the case with
k =0.6. Note that the dashed line diverges at k =1/V3
where this mode seems to have positive eddy viscosity in
any direction [8]. The variations of Reynolds number
against ¢ for several values of 0 are shown in Fig. 3. The
straight line represents the critical Reynolds number R,
of the periodic mode by two-dimensional disturbances
which is independent of 6 and ¢. The revised critical
Reynolds number is found at the critical direction:
(0.,¢.)=(7/2,0.815). If we choose the value closer to
k=1/V'3, then R, becomes larger. We did not attempt
to determine R, around k =1/V'3 here because it re-
quires too many truncation numbers.
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FIG. 3. The case of Kk =0.6. The Reynolds number for vari-
ous 6. (a) 6=0.544, (b) 6=0.801, (c) 6=m/2, which gives
R_.=3.93, and (d) the periodic mode which is independent of 8
and ¢, and gives the 2D critical Reynolds number R,. =4.68.

In order to confirm that this three-dimensional mode
shows the negative eddy viscosity, we plot the depen-
dence of the growth rate o on the magnitude of the wave
number € in Fig. 4. Curves for various Reynolds num-
bers indicate the growth rate o being in proportion to €
in the vicinity of the origin and the proportional
coefficient grows as the Reynolds number increases. The
marginal Reynolds number is determined by the condi-
tion that this coefficient is zero. By using a log-log plot
we obtain 2.0 for the value of this power.

In Fig. 2 the bold line with 6= /2, which is the direc-
tion of the shorter period of the main flow, indicates the
minimum Reynolds number due to the three-dimensional
disturbance. Here ¢ has been selected for each 6 and & so
as to give the minimum value of R. In other words, we
draw the line: R (k,0)=minyR (k,6,4). We find that the
critical values are given by the three-dimensional distur-
bance in the range 0.54 <k <0.71. The minimum value
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FIG. 4. (6,4)=(7/2,0.815). (a) R=3.90<R,, (b)

R=4.10>R_,,and (c) R=4.80>R,.
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with 6=0, which is the direction of the longer period of
the main flow, is also represented by the bold line in Fig.
2. It is always larger than the value R, and both bold
lines coincide at k =1 as we expect. From Table I we
know that the relations 6,=x/2 and ¢, ~m/4-hold ir-
respective of k. This universal nature is greatly in con-
trast to the two-dimensional case. When the disturbances
are limited to two-dimensional ones the critical large-
scale modes depend on the anisotropic parameter k, i.e.,
6,. =~arctan(k) where 6,. is the direction of the two-
dimensional critical mode.

We have shown numerically that the three-dimensional
negative eddy viscosity effect appears at the onset of the
instability in the two-dimensional flow: W(x,y)
=coskx cosy in medium anisotropic range,
0.54<k <0.71. It shows clearly that Squire’s theorem
cannot be extended to nonparallel two-dimensional flows
even if we limit our concern to long-wave disturbances.
The wave number of this mode is parallel to the y direc-
tion (i.e., the direction of the shorter period of the main
flow) and the angle ¢ is close to /4. The reason for the
relation ¢~ /4 is as follows. When the magnitude of
the two-dimensional exponents €,=V a*+B2<<y, the
effect of ¥ is negligible, while ¥ works as damping when
¥ >>€,. The only possibility that the instability is in-
duced by y is the case ¥ =¢,. This result indicates that
the three-dimensional large-scale structure may be organ-
ized in this direction spontaneously even in the small-
scale two-dimensional forcing. The mere intrinsic prop-
erties of the two-dimensional flows can induce the three-
dimensionality in the flow without additional three-
dimensional external forcing. Therefore the two-
dimensional flows which are uniform in the vertical direc-
tion by some mechanisms such as the condition of the
Taylor-Proudman theorem [9] may break and create
large-scale structures which are not parallel to the basic
two-dimensional flows. It is of great interest to investi-
gate theoretically and experimentally whether three-
dimensional large-scale structures may generate in more
general two-dimensional flows or not. Our results sug-
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TABLE I. Values of (6,¢) for the minimum Reynolds num-
ber to the three-dimensional disturbances.

k 0 )

0.30 /2 0.818
0.40 /2 0.817
0.50 /2 0.817
0.55 /2 0.816
0.60 /2 0.815
0.65 /2 0.814
0.70 /2 0.813
0.80 /2 0.809
0.90 /2 0.803
1.00 /2 0.798

gest that the ratio of the characteristic lengths of both
the x and y directions in the flows is essential to its gen-
eration. We hope that some experiments in a rotating
liquid with a long vertical uniformity which simulate geo-
physical phenomena [10] may be candidates for this pur-
pose. In these experiments the two-dimensional secon-
dary flow appears as a result of a primary instability of
the parallel flow as usual. In some conditions a three-
dimensional large-scale structure may be generated by
the mechanism that we have presented here. Finally, we
would like to stress that our results are entirely based on
the numerical calculations of the eigenvalue problems. It
is desirable to derive the same results by using some
analytical methods. The method proposed by Dubrulle
and Frisch [11] has been implemented in two- and three-
dimensional flows [12,13]. Its application to our problem
is left for a future work.
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